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ABSTRACT
A new approach is presented to the problems associated with designing and implementing virtual environment appli-
cations which supports robust methods of describing and building virtual worlds and interaction techniques. Despite
the functional similarities between virtual world and graphical user interface (GUI) designers, virtual world designers
are hindered by a lack of low level support which user interface designers typically get from a toolkit or application
framework. Furthermore, a well-defined set of standard interaction techniques and devices has been established for the
desktop metaphor which does not exist in the virtual environment arena. 

The importance of shielding the programmer from the low level details of rendering, network communication, and de-
vice software is widely recognized. However, most off-the-shelf virtual reality systems provide only a device polling
mechanism through which the entire interface must be built. Polling forces the programmer to delve into the low level
details of each device for every interaction technique to be used. We are currently developing a system called the
Bridge that is designed to meet the needs and requirements of highly interactive virtual environment applications. The
distributed architecture of the Bridge clearly separates the interaction from the application and supports a more effi-
cient, event-driven model. High level descriptions of user-computer dialogues can be easily constructed allowing mod-
ification of interaction techniques and styles.
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1. INTRODUCTION

1.1. Motivation
As applications of virtual environments become more complex, so also must the interfaces to these applications. Con-
sequently, virtual environment applications demand high performance computation and communication as well as sup-
port for robust interaction techniques and dialogue† structure. With each new approach to virtual environment system
architecture design (of which there have been many), we find that overall performance is slowly increasing. Issues such
as the animation frame rate, input response times, and multiprocess communication have been addressed. However,
although the overall objective of these software architectures is to alleviate the implementation problems of the virtual
world builder while preserving system performance, the assistance thus far has been shallow – particularly in the area
of interface support. 

Few systems offer any type of dialogue structure necessary for high level user interface construction. Thus the flexi-
bility of the system to adapt to changing technology such as new hardware devices and interaction techniques is often

†. We describe a dialogue in this context as the enumeration of all user action(s)–system response(s) pairs. In other words, it is the
language by which the user and the application “talk” to one another. We will elaborate on this point in section 3.
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limited. Without dialogue support, each technique must be constructed in the application from low level device data
which must be explicitly requested each time through the animation loop. This approach is nether reusable nor effi-
cient, both in terms of system performance and programming effort. 

This paper will expand on this notion of user interface dialogue as applied to virtual environments specifically focus-
sing on areas we believe current technology falls short. A software architecture is described which is currently under
development that addresses issues related to robust interface design and performance.

1.2. Requirements
In surveying the literature on software architectures for virtual environments, a number of relevant design require-
ments have been identified. Most of these have to do with maintenance of system performance. However, we have
expanded on this and categorize design requirements in terms of performance issues and programming issues. Pro-
gramming issues deal primarily in describing what the virtual world is while performance issues deal primarily with
how the virtual world operates and executes the functionality as described. An in-depth discussion will follow in sec-
tion 3.

Performance requirements
• Graphics frame rate. The frame rate must not lag below 10 frames per second to preserve the illusion of movement

[1]. The consequence of a slow frame rate can be poor operator performance and often disorientation and simulator
sickness.

• Response to user inputs. This requirement is flexible depending on the input in question. While it may be entirely
acceptable to allow a small lag between the utterance of a spoken word and its acceptance, the same lag would be
unacceptable for the movement and subsequent graphical update of a virtual hand device. Inputs which are closely
associated with the frame rate (such as virtual hand data) must be updated at a comparable rate (≥10 updates per
second). Response times of other user inputs must be determined within the context of the application. 

• Communication speed. This is a generic requirement involving the time consumed in sending data between two
points; either logically or physically. Under current computing power constraints, it is not possible to develop a
functional virtual world beyond a simple toy world on a single processor. Thus efficient communication between
multiple processors, multiple computers, and multiple software modules is necessary. This communication must
consider not only hardware constraints but the bandwidth required by the application.

• Multiple simultaneous device support. Virtual environment interfaces are multimodal by their nature. Therefore, the
use of multiple simultaneous input and output devices is required. This implies not only that several devices can be
operated concurrently, but also that they can be combined to form higher level interactions. This will be further clar-
ified in the discussion of dialogue.

• Logical device support. Logical devices (often called widgets [2]) are objects with geometry and associated behav-
ior. They typically combine lower level interactions using a syntactical description into higher level events. Use of
such objects is essential to the development of robust interfaces to virtual environments. In the same way that win-
dow environments have predefined widgets (menus, dialogue boxes, scroll bars, etc.), virtual environments can also
benefit from the incorporation of reusable, familiar interaction techniques.

• Continuous and discrete event support. We separate events into two categories: continuous and discrete. A discrete
event is an isolated occurrence of some importance. An object-object intersection or a spoken word are examples of
discrete events. Continuous events, on the other hand, are not isolated but rather occur repeatedly for some duration
of time. The movement of a tracker to control eye position is an example of a continuous event. Although both are
important parts of a human-computer dialogue, they should be handled differently. Continuous events are closely
associated with the frame rate while discrete events can be handled in a less timely manner.

Programming requirements
• Intuitive programming interface. Often overlooked in the design of a development environment is the organization

of the system from the programmer’s point of view. It is all too common to find toolkits designed from the perspec-
tive of the toolkit implementation rather than the end user (the programmer). For this reason, an object-oriented de-
sign is applicable with objects defined in terms of what the programmer needs to manipulate to accomplish the task
at hand. 

• Extensibility. Due to the dynamic nature of virtual environment technology in general, it is essential to allow for
change in a virtual environment system architecture. As new device technology is introduced, network speeds in-
crease, and computational power expands, the software must adapt without major alterations to the underlying fabric
of the system.



• Flexibility. There are basically no universally accepted interaction devices or techniques in use today in the virtual
environment arena. Therefore, a system design must account for the many possible combinations of device-tech-
nique-action mappings and support a rapid method of modification. 

• Simulation process attachment. The importance of maintaining a high animation frame rate is widely accepted. The
most common technique used to maintain frame rate is asynchronous simulation and animation processes as de-
scribed by Robertson, et al. [3]. However, this is not a trivial implementation. Ideally, we would like to provide a
mechanism by which heavy computation processes such as a fluid dynamics simulation can be executed on a sepa-
rate process without sacrificing communication with the animation process which controls the interface. Further-
more, because this technique is so commonly used, it should be made as transparent as possible to the programmer.

• Dialogue description support. One of the primary topics of this paper is dialogue description and control. In order to
support the development of high level interactions with an application, the developer must be able to build a “lan-
guage” by which the operator will communicate with the system. 

• Separation of content from style. A widely recognized issue in interface design in general is the need to separate the
specifics of the application (the content) from the language of the interface (the style). In fact the User Interface
Management System (UIMS) [4] was developed in part to deal with this issue. However, this separation can be taken
too far resulting in an ineffective interface which is disjoint from the application [2]. The objective is to develop an
interface which separates the content from the style in a modular fashion while maintaining integration with the ap-
plication.

Each of these requirements will be discussed in more detail in section 3 where the Bridge architecture is described. All
of these have been addressed in some form in previous work in this area. However, in reviewing the field, we find that
there is a general difference of opinion as to what a virtual environment system architecture should be and consequent-
ly, no single system addresses all requirements. Often, one approach to a problem is chosen over another, although
both may be valid due to the widely varying types of suitable applications for virtual environment technology. We will
first review a number of approaches to virtual environment systems and what we view as the strengths and weaknesses
of each. This will be followed by a description of the Bridge system architecture design.

2. BACKGROUND
The system most closely aligned with the Bridge design is the Veridical User Environment (VUE) developed at IBM
Thomas J. Watson Research Center [5]. It stresses the importance of dialogue structure in virtual environment inter-
faces. However, we see two primary differences in our approach. First, the VUE system downplays the importance of
interprocess communication stating that “a virtual world requires relatively low bandwidth among the individual pro-
cesses...”. We dispute this claim on the grounds that many applications require extremely high bandwidth from simu-
lation to interface. Were this not so, there would not be a need for specialized network protocols and systems such as
Distributed Interactive Simulation (DIS) [6], NPSNET [7], and BrickNet [8]. A classic example of a high bandwidth
application would be a simulation of a large number of autonomous objects. At each step in the simulation, the state
of each of these objects (position, orientation, scale, color, etc.) may be updated. This introduces an extremely high
network load demanding a more efficient method of communication. Second, although VUE contains the most thor-
ough dialogue control and description mechanism to date, it seems to overlook the importance of polling in addition
to, rather than instead of, event queueing. In other words, how does the programmer initiate the request of device
(physical or logical) data? We believe that both polling and event queueing are necessary. 

Appino, et al. [5] describe their dialogue structure in terms of three levels each being a subdialogue of the next higher
level [9]: the specific, the generic, and the executive. At the lowest level is the specific level which refers to the hard-
ware and software devices while the generic level deals with combining specific level events into interaction tech-
niques. Lastly, the executive level handles event coordination and the attachment of semantic significance to user
actions. This three level description is analogous to the lexical-syntactic-semantic designation described by Foley, et
al. [10]. As is the case with graphical user interface (GUI) design, each level requires a separate design in order to
determine what inputs and corresponding feedback constitute the interface. A goal of the Bridge design is to accom-
modate this three-level development.

The Minimal Reality (MR) toolkit developed at the University of Alberta [11] places a layer of abstraction in between
the programmer and the necessary resources; graphics, devices, and computation. In taking this approach, MR does
not handle event processing as a queueing mechanism but rather requires that all data requests be initiated by the ap-
plication. For example, when the interface needs to know when a hand posture is made, it must specifically ask for that
information rather than register an interest in this event and have it reported as it occurs. For discrete events, such as
a hand posture, event queueing allows most processing to occur outside the animation loop and is therefore more ef-
ficient than polling. On a separate issue, while MR provides a programming interface to controlling processes and net-



work resources, it forces the programmer to control multiple processes explicitly. This issue was addressed by the
Distributed Virtual Environment Research Platform (DIVER) developed at the University of Virginia [12]. 

DIVER makes the control of asynchronous processes transparent. The programmer develops an application process
which executes external to the renderer. The rendering process, in addition to handling the graphics, also controls input
and output devices. Communication to/from the rendering process is accomplished via a network protocol. If the ap-
plication needs to know the value of a tracker, a request is sent from the application to the rendering process which
then returns a data packet with the requested information. Although the separation of the interface from the simulation
is clearly defined and maintained in this system, it will have difficulties accommodating applications requiring a high
bandwidth between the interface and the simulation due to the resulting high network traffic. Furthermore, similarly
to MR, DIVER does not support dialogues at the same depth as VUE. Consequently, complex interaction techniques
are more difficult to implement and are not necessarily reusable.

These systems each address specific issues and problems inherent to virtual environments. However, none of them
cover all of the requirements described in section 1.2. The Bridge system architecture was designed to provide the low
level support universally accepted as essential to virtual environment development (i.e. 3D hierarchical graphics, serial
device control, communications support) while also addressing the issues of high level interface construction, specif-
ically that of dialogue description and control.

3. THE BRIDGE SYSTEM ARCHITECTURE

3.1. Conceptual design
The overall structure of the Bridge is based on two primary principles. First, in order to maintain acceptable system
performance, particularly the frame rate, the animation loop must compute and render only what is necessary for each
frame eliminating all extraneous processing. Second, dialogue support is best facilitated by the separation of applica-
tion content from interaction style. These two issues are closely coupled. As illustrated in figure 1, the application and/
or the simulation are executed asynchronous to the rest of the system in each case. This increases system performance
as well as separates the content of the simulation from the style of the presentation. However, our approach differs
from others in that we do not confine content to an asynchronous process. Rather, as suggested by Conner, et al. [2],
the Bridge supports a closer integration of content and style while still maintaining modular separation. 
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Figure 1: Schematic diagrams of the Bridge system architecture and its primary influential predecessors.



The distinction made between the terms simulation and application as used in figure 1C, has to do with level of content.
We take simulation to mean that part of the system entirely devoted to content but which has no knowledge of the con-
text of the application (i.e. it does not know it is being used in a virtual environment). The simulation is not the domain
of the interface designer or the world builder. Recognizing that constructing a virtual environment entails much more
than designing an interface, the term application is used to describe that part of the implementation which maintains
content within the context of a virtual environment. It does not contain information dealing with style (i.e. the inter-
face). As an example, consider a fluid dynamics system (See figure 2). The simulation computes the flow of the fluid

producing data describing the environment (but not what it looks like or how to interact with it). The application con-
nects the simulation to the renderer and the dialogue manager allowing the transfer of simulation data to the virtual
environment and also of user requests back to the simulation. The application determines what the fluid flow looks
like (i.e. how it is visualized). In this case, an arrow is used to encode flow direction, speed, and temperature. The ap-
plication also provides the semantic descriptions of user requests. In the GUI domain, this is often a set of callback
routines that are called to handle a particular input event. In this example, there is a description of what to do when the
ChangeTemperature action is invoked. The description includes changing the color of the arrow and notifying the sim-
ulation of the change. The application has no information as to what user action signified a request to change the tem-
perature. Only the dialogue manager knows that a button press performs this function. Subsequently, if the interface
designer wishes to use a hand posture to control this function, only the dialogue manager needs to be changed. All
aspects of interactive style are encapsulated in the dialogue manager. 

By removing the computationally intensive simulation process(es) from the animation loop, the Bridge maintains a
high graphics frame rate. This technique, however, introduces a communication problem. With the simulation now
residing elsewhere, the rendering and simulation processes cannot interact as freely as they could as one process. While
others have solved this problem using a network message passing scheme from process to process [5, 11, 12], we find
that network limitations hinder the development of large scale applications. The Bridge addresses this issue using a
shared memory mechanism allowing data to be shared between objects on multiple processes on a single machine.
Both the simulation and the rendering processes have similar objects which share essential data. Communication be-
tween these processes requires time on the order of a memory access rather than that of an RPC call. From the pro-
grammer’s point of view, the data resides in RAM and is always immediately accessible. This same mechanism is used
to handle all time critical communication within the system. 

At the heart of the Bridge is the dialogue manager which is the primary facility by which the programmer describes
the interface. As shown in figure 1, style is encapsulated in the dialogue manager while the content is confined to the
simulation which executes asynchronous to the rest of the system and to the application which, in part, holds the link
between content and style. This approach allows the developer to minimize the “disposable” part of an application.
That is, any part of the implementation which is specific to the application (i.e. it contains content knowledge) is not
reusable. The Bridge encourages reusability by removing interaction technique descriptions from the application into
the dialogue manager. This issue will be discussed in detail in the next section.

3.2. The Dialogue Manager
The dialogue manager of the Bridge can be viewed as an embedded transition network which maintains the “state” of
the interface. At the lowest level (the lexical [10] or the specific [5] level), device details are encapsulated. Hardware
capabilities are formed into atomic units. These units can be thought of as the “words” of the interface language. This
includes items such as button presses, hand gestures, or any entity which cannot be subdivided further with any mean-
ing. This level also is responsible for interacting with the device servers which, similar to the simulation process, ex-
ecute asynchronous to the animation process where the dialogue manager resides. These atomic units (lexicons) are
combined into “sentences” using syntactic rules (the syntactic [10] or the generic [5] level) which dictate how they can
be legally composed. This is often where interaction techniques (also logical devices) are described. The third level

SIMULATION (content)

Flow direction
Flow speed
Temperature

178°
10 cm/s
31° C

APPLICATION (content)

Flow direction ⇒ Arrow direction
Flow speed  ⇒ Arrow length
Temperature  ⇒ Arrow color

ChangeTemperature (T)
Update arrow color
Inform simulation of new temperature

DIALOGUE MANAGER (style)

ButtonPress  ⇒ ChangeTemperature +1

Figure 2: An example showing the conceptual distinction between the simulation, the appli-
cation, and the dialogue manager.



(the semantic [10] or the executive [5] level) is where the “sentences” formed in the last level are understood. As an
example, the popular “point and fly” style of virtual movement using a glove device and tracker would be described
as the combination (syntax) of a finger pointing hand posture (a lexicon) and tracker orientation (a lexicon) into a high-
er level token (we will call it POINT). The dialogue then understands the POINT token to mean move the viewpoint
in the direction specified by the tracker orientation. This same sequence of actions is executed in reverse for output
events. This allows for the design of semantic, syntactic, and lexical feedback. Another benefit of this style of dialogue
control is that it is flexible. Because the interface is described in a hierarchical fashion using subdialogues, it can be
altered quickly at any level. For example, we can easily redefine viewpoint movement to be controlled by a button
rather than a glove device without altering the viewpoint movement method.

This style of user action processing is an event queueing model. Rather than require the request and subsequent pro-
cessing of input data explicitly in the animation loop, the dialogue manager is informed of what events are relevant
and reports them accordingly to the application. Furthermore, since the dialogue manager is integrated with the ren-
dering process, data associated with events can also be provided. If the interface requires the detection of intersecting
objects, the dialogue manager can report not only the intersection but can also identify which objects collided. How-
ever, even though we rely on queueing for discrete events, low level data is available upon request (a polling mecha-
nism) for continuous events. This is particularly useful in cases where the application requires access to device data.
For example, when grasping a virtual object, the graphical representation of the object will move with the tracker it is
attached to. Consequently, we would want tracker data continuously until the grasp is released. We have found that
both polling and queueing are necessary in constructing efficient interfaces. 

The fact that data producing devices operate at their own pace (usually faster than the frame rate) on separate processes
allows fast responses to user inputs. There is no significant lag in response to data which is closely associated with the
frame rate such as tracker data. The system easily adapts to new device technologies requiring only that a process be
constructed to control the device and communicate with the dialogue manager. 

4. CONCLUSIONS
One area we believe the Bridge can be improved upon is in developing a more complete separation of content from
style. As it now exists, the dialogue manager encapsulates interaction style. However, visualization style is left in the
domain of the application. We believe it is possible to provide a similar separation thereby confining visualization
techniques to another conceptual module.

The Bridge is intended to provide virtual environment developers with the tools necessary to construct usable virtual
worlds in which real work can take place. This implies that the system must not only support complex dialogue struc-
tures but also that it be flexible and efficient. The true test of this, or any, virtual environment system architecture will
occur when it is applied to a computationally and conceptually complex simulation with an equally complex interface.
Although computationally intensive applications [13] have been constructed, we have not yet seen an equally complex
interface. Consider a compound interaction technique where dynamic gestures are combined with speech and applica-
tion context with constraints. This forces the dialogue manager to deal with heavy computation simultaneously with
communication with the application and the renderer. These types of scenarios will help to identify weaknesses in the
Bridge’s design and implementation and point the way to future improvements. 
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